Wilf-Classification of Mesh Patterns of Short Length
نویسندگان
چکیده
This B.Sc. project deals with mesh pattern avoidance in permutations. A mesh pattern is a pair p = (τ,R), where τ is a permutation in Sk and R ⊆ J0, kK × J0, kK. The elements of R denote lled boxes in a mesh pattern. For a permutation π to contain a mesh pattern, it has to contain the underlying classical pattern τ , and no points in π can be located in the shaded boxes. In this paper we begin the study of Wilf-classifying mesh patterns by classifying 776 out of the 1024 mesh patterns of length 2. Two mesh patterns p and q are said to be equivalent if for any permutation π, π avoids p if and only if π avoids q. The paper introduces a new operation that preserves pattern equivalence and provides rules determining which additional boxes in a mesh pattern p can be shaded. This is useful to lower the number of patterns one needs to look at in the process of Wilf-classifying patterns. We also have some observations on the only non-trivial interval pattern of length 3. Útdráttur. Í þessu B.Sc. verkefni vinnum við með mynstraforðun möskvamynstra í umröðunum. Möskvamynstur er par p = (τ,R) þar sem τ er umröðun í Sk og R ⊆ J0, kK × J0, kK. Stökin í R tákna skyggða ferninga í möskvamynstrinu. Umröðun π er sögð innihalda möskvamynstrið p ef hún inniheldur grunnmynstrið τ og engir punktar π eru inn í skyggðu ferningum mynstursins p. Í þessu verkefni hefjum við Wilfokkun möskvamynstra, þar með hafa 776 mynstur af 1024 verið Wilfokkuð. Tvö möskvamynstur p og q eru sögð vera jafngild ef fyrir sérhverja umröðun π gildir að π forðast p ef og aðeins ef π forðast q. Verkefnið kynnir nýja aðgerð sem varðveitir jafngildi mynstra og gefur reglur um hvaða ferninga í mynstri p má skyggja aukalega í möskvamynstri. Þessi aðgerð er hentug til að minnka fjölda þeirra mynstra sem þarf að skoða við Wilfokkun mynstra. Einnig höfum við skoðað eina bilamynstrið af lengd 3 sem er ekki augljóst, og setjum fram athugasemdir um það.
منابع مشابه
New Equivalences for Pattern Avoiding Involutions
We complete the Wilf classification of signed patterns of length 5 for both signed permutations and signed involutions. New general equivalences of patterns are given which prove Jaggard’s conjectures concerning involutions in the symmetric group avoiding certain patterns of length 5 and 6. In this way, we also complete the Wilf classification of S5, S6, and S7 for involutions.
متن کاملAvoiding Patterns of Length Three in Compositions and Multiset Permutations
We find generating functions for the number of compositions avoiding a single pattern or a pair of patterns of length three on the alphabet {1, 2} and determine which of them are Wilf-equivalent on compositions. We also derive the number of permutations of a multiset which avoid these same patterns and determine the Wilf-equivalence of these patterns on permutations of multisets. 2000 Mathemati...
متن کاملA New Class of Wilf-Equivalent Permutations
For about 10 years, the classification up to Wilf equivalence of permutation patterns was thought completed up to length 6. In this paper, we establish a new class of Wilf-equivalent permutation patterns, namely, (n −1, n −2, n, τ ) ∼ (n −2, n, n −1, τ ) for any τ ∈ Sn−3. In particular, at level n = 6, this result includes the only missing equivalence (546213) ∼ (465213), and for n = 7 it compl...
متن کاملNew Equivalences for Pattern Avoidance for Involutions
We complete the Wilf classification of signed patterns of length 5 for both signed permutations and signed involutions. New general equivalences of patterns are given which prove Jaggard’s conjectures concerning involutions in the symmetric group avoiding certain patterns of length 5 and 6. In this way, we also complete the Wilf classification of S5, S6, and S7 for both permutations and involut...
متن کاملSome Wilf-equivalences for Vincular Patterns
We prove several Wilf-equivalences for vincular patterns of length 4, some of which generalize to infinite families of vincular patterns. We also present functional equations for the generating functions for the number of permutations of length n avoiding σ for the patterns 124-3, 134-2, 231-4, 241-3, 132-4, and 142-3. This nearly completes the Wilfclassification of vincular patterns of length ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015